ОРИГИНАЛ УТВЕРЖДАЮ

Генеральный директор
ООО «Сегнетикс»

«____» _ 2018 г.

Модули расширения MR для программируемых логических контроллеров Pixel, SMH2G, SMH2G(i) и SMH4

Руководство

Версия 3.10

EC DECLARATION OF CONFORMITY

Manufacturer: Segnetics, LLC

Shkiperskiy protok, Bld.14, Corp.8, lit. D 199106, Saint-Petersburg, Russia

Tel: +7 (812) 320-95-27

E-mail: support@segnetics.com, sales@segnetics.com

Authorized representative in EU: CONCEPTUM, SIA

Lubanas Str. 78, Riga, LV-1073, Latvia

Phone: +371-677-95225

E-mail: conceptum.sia@gmail.com

Type of product: Programmable logic controller (complete with modules) and its modifications

Model: Programmable logic controller SMH2G(i)-002x-xx-x

Extension modules MC series; Extension modules MR series; Communication modules PNA series; Memory modules PMM series;

Battery LBA.

Application: Programmable logic controller SMH2G(i) complete with modules and

modifications are intended for automation of engineering systems of buildings

and technological processes in the industries.

We, "Segnetics" LLC, DECLARE UNDER our RESPONSIBILITY that the product "Programmable logic controller SMH2G(i) (complete with modules) and its modifications" which this declaration concerns, correspond to safety requirements and the harmlessness, stated in the Directive, 2004/108/EC (EMC), Directive 2006/95/EC (LVD) and Directive 2011/65/EC (RoHS).

Manufacturer "Segnetics" LLC. at intermediary of authorized representative in EU – "Conceptum" SIA – undertakes to transfer special engineering specifications concerning "Programmable logic controller SMH2G(i) (complete with modules) and its modifications" to national bodies of the EU countries under their well-founded requirement, with preservation for "Programmable logic controller SMH2G(i) (complete with modules) and its modifications" the rights connected with intellectual property legal protection of these documents.

The Programmable logic controller SMH2G(i) with modules meets the requirements of Directives of EU under which it falls.

For fulfillment of safety requirements and the harmlessness, specified in the Directives, 2004/108/EC (EMC) and 2006/95/EC (LVD) and 2011/65/EC (RoHS), following international standard series have been applied: **EN 61131, EN 61000-4, EN 61000-6 and EN 50581.**

Test reports No. KA 161-15-020, No. KA 161-15-025 by accredited laboratory Inspecta Estonia OU. Date of testing 26.06.2015.

Compliance of the Technical file to requirements of the Directives 2004/108/EC and Directive 2006/95/EC is checked and confirmed by Inspecta Estonia OU, Notified Body No. 1336.

Statement No. EM-05-009. Date of check 29.06.2015. **Assessment No.MP-05-010**. Date of check 29.06.2015

General Director "Segnetics" LLC.

K.Golubev

Saint-Petersburg,

01 September 2015

Указания по технике безопасности

Прочитайте данную инструкцию перед началом работы.

К монтажу, эксплуатации и техническому обслуживанию модулей расширения может допускаться только квалифицированный персонал, имеющий право осуществлять данные работы в соответствии с установленной практикой и стандартами техники безопасности.

Контроллер является источником опасного производственного фактора — напряжения в электрических цепях, замыкание которых может произойти через тело человека.

Примечание. Не открывайте контроллер, не производите подключения проводов, если питание контроллера не отключено.

Примечание. После отключения питающего напряжения на клеммах в течение 10 секунд может оставаться опасный потенциал.

Примечание. Даже если питание контроллера отключено, на клеммах контроллера может быть опасное напряжение от внешних источников. Например, к клеммам цифровых выходов может быть подключено напряжение внешней сети.

Содержание

УК	АЗАНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ	3
1.	ОБЩЕЕ ОПИСАНИЕ	5
1	1.1 Назначение и область применения	5
	1.2 ИСПОЛЬЗУЕМЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	
	1.3 УСЛОВИЯ ЭКСПЛУАТАЦИИ И ОГРАНИЧЕНИЯ	
	1.4 КОМПЛЕКТ ПОСТАВКИ	
2.	МОДУЛИ РАСШИРЕНИЯ MR – XXXX-XX-X, СВОДНАЯ ИНФОРМАЦИЯ	9
	2.1 Основные части модуля и элементы индикации	
	2.2 КОД ЗАКАЗА И МАРКИРОВКА	
	2.3 ДОПОЛНИТЕЛЬНЫЕ ПРИНАДЛЕЖНОСТИ	
3.	ПОДГОТОВКА К РАБОТЕ	
	3.1 Монтаж на DIN-рейку	
	3.2 МОНТАЖ НА МОНТАЖНУЮ ПАНЕЛЬ	
	3.2 КОМПОНОВКА МОДУЛЕЙ В ШКАФУ	
4.	ИСПОЛЬЗОВАНИЕ МОДУЛЕЙ. ОБЩАЯ ИНФОРМАЦИЯ	18
2	4.1 Системная шина	18
	4.2 Электропитание	
	4.3 ИСПОЛЬЗОВАНИЕ В ПРОГРАММЕ КОНТРОЛЛЕРА	
	4.4 БЕЗОПАСНОЕ СОСТОЯНИЕ ВЫХОДОВ	
	4.6 ДИАГНОСТИЧЕСКИЕ СРЕДСТВА	
	4.7 СЕРВИСНЫЙ РЕЖИМ КОНТРОЛЛЕРА	
	4.8 Включение в работу	
2	4.9 Влияние количества модулей MR на FBD-программу	29
5.	МОДИФИКАЦИИ МОДУЛЕЙ РАСШИРЕНИЯ	
	5.1 Модуль расширения MR — 0120-00-0	
	5.2 Модуль РАСШИРЕНИЯ MR — 0800-00-0	
	5.3 МОДУЛИ РАСШИРЕНИЯ MR — 0602-00-0 И MR — 0504-00-0 5.4 МОДУЛЬ РАСШИРЕНИЯ MR — 0810-0x-0	
	5.5 МОДУЛЬ РАСШИРЕНИЯ MR — 0810-02-0	
6.	ГАРАНТИЙНЫЙ СРОК	49
7.	ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	49
8.	СРОК СЛУЖБЫ	49
9.	ТРАНСПОРТИРОВКА	49
10	СВЕЛЕНИЯ О ПРЕЛПРИЯТИИ.ИЗГОТОВИТЕЛЕ	40

1. Общее описание

1.1 Назначение и область применения

Модули расширения MR предназначены для создания централизированной системы управления технологическим процессом, основой которой являются контроллеры программируемые логические Pixel, SMH2G, SMH2G(i) и SMH4.

За счет модульности можно собрать конфигурацию системы максимально приближенную к решаемой задаче.

В «SMLogix» работа с входами/выходами модулей расширения MR полностью «прозрачна» и не отличается от работы с встроенными входами/выходами головного контроллера. Поэтому не требуется никакого дополнительного времени для овладения навыками работы с модулями.

1.2 Используемые обозначения и сокращения

Ед. – единица

PLC или ПЛК – контроллер программируемый логический SMH2G(i), SMH2G,

SMH4 или Pixel

Контроллер – сокращение от ПЛК

Супервизор – внутренняя схема контроллера, отслеживающая и

обеспечивающая правильность его работы

EEPROM – энергонезависимая память

 MC
 – модуль расширения МС – хххх-хх-х

 MR или MР
 – модуль расширения МR – хххх-хх-х

MR – хххх – модуль расширения MR – хххх-хх-х, сокращённый вид

СМ – сетевой модуль (только LON)

СР – сервисный режим

NetPort – разъём контроллера для подключения сетевого модуля

ИП — источник питания

Прим. – примечание

FBD-программа – прикладная программа, написанная средствами «SMLogix»

SMLogix – среда программирования для микроконтроллера на графическом

языке программирования FBD (язык функциональных блоков,

стандарт МЭК 611131-3)

Help – встроенная <u>справка</u> SMLogix

Цикл – время, необходимое для выполнения одного цикла FBD-

программы в контроллере

ПО – программное обеспечение

Modbus – встроенный протокол обмена данными

Modbus-RTU – вариант протокола для последовательных портов

Modbus-TCP – вариант протокола для Ethernet

1.3 Условия эксплуатации и ограничения

	Условия использования	Условия транспортировки и хранения	
Температура	-40°С (без замораживания) +55°С	-40 °C +65 °C	
Влажность	До 90 % без конденсации	До 90 % без конденсации	
Давление	высота до 3000 м над уровнем моря	высота до 3000 м над уровнем моря	
Атмосфера	Без коррозирующих газовБез проводящей пыли	Без коррозирующих газовБез проводящей пыли	
Вибрация	10 - 57 Гц, амплитуда 0,075 мм, ускорение: 9.8 м /с ² (1 G) в направлении Х,Ү,Z по 80 мин. на каждое. (Временной коэф.: 8 мин х коэф. 1 0 = общее время 80 мин)	10 - 57 Гц, амплитуда 0,075 мм, ускорение: 9.8 м /с ² (1 G) в направлении X,Y,Z по 80 мин. на каждое. (Временной коэф.: 8 мин х коэф. 1 0 = общее время 80 мин)	
Удар	Ускорение 147 м/с², время воздействия импульса 11 мс, 3 раза в каждом из направлений X, Y,Z	Ускорение 147 м/с², время воздействия импульса 11 мс, 3 раза в каждом из направлений X, Y,Z	

Степень защиты – IP20.

1.4 Комплект поставки

•	Модуль расширения MR	1 шт.
•	Кабель CB-MR – 0.08	1 шт.
•	Клеммная колодка МС310-50003Е3	2 шт.
•	Клеммная колодка МС310-50004Е3	2 шт.

2. Модули расширения MR – хххх-хх-х, сводная информация

2.1 Основные части модуля и элементы индикации

Внешний вид

Модуль расширения представляет собой устройство в пластиковом корпусе серого цвета, предназначенное для крепления на DIN-рейку или непосредственно монтажа на монтажную пластину. Расположение основных частей модуля представлено на рисунке ниже:

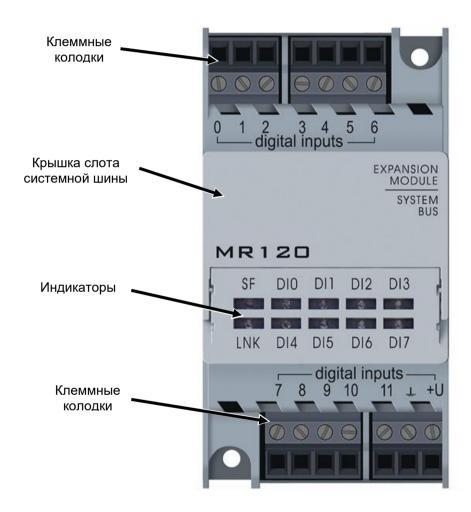


Рисунок 1. Внешний вид модуля расширения

Крышка слота системной шины

Крышка слота системной шины предназначена для доступа обслуживающего персонала к разъемам системной шины при проведении монтажных работ.

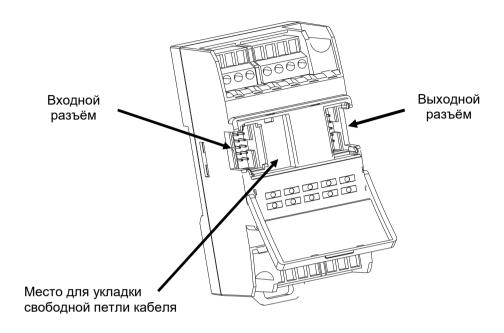


Рисунок. 2. Вид слота шины расширения с открытой крышкой

Клеммные разъемы

Модуль содержит 4 съемных клеммных разъема. Максимальное сечение кабеля, зажимаемое винтовой клеммой, равно 2,5 мм². На рисунке ниже изображены все клеммные разъемы и их цоколёвка, принятая в настоящем руководстве:

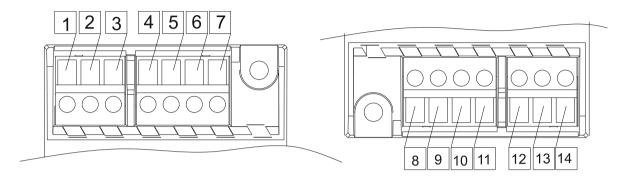


Рисунок 3. Цоколёвка клеммных разъемов

Требования к подключению проводов

Максимальное сечение, подключаемого к клеммам провода составляет 2.5 мм².

Тип провода – многожильный мягкий, одножильный жесткий.

Использование наконечников для формирования заделываемых концов многожильного провода более предпочтительно, чем пайка.

Длина заделываемого в клемму проводника должна быть не менее 8 мм:

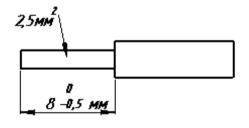


Рисунок 4. Заделка провода

Индикация

Модули обладают развитой системой светодиодной индикации, при помощи которой диагностируется состояние входов/выходов, состояние связи с базовым контроллером, а также аварийные режимы работы.

В качестве примера на рисунке представлена маркировка системы индикации модуля MR – 0602-00-0:

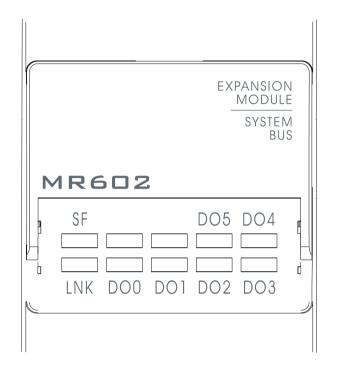
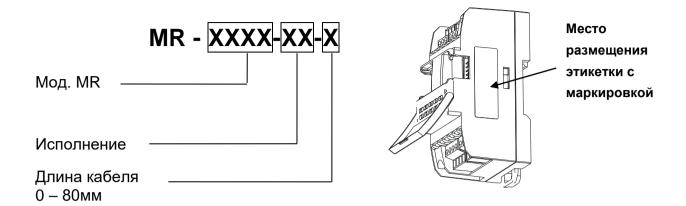



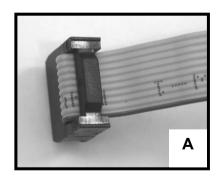
Рисунок 5. Внешний вид индикаторов MR – 0602-xx-x

Индикатор	Цвет	Действие	Значение
		включен	Модуль готов к работе
SF	Зеленый	выключен	Нет питающего напряжения или Модуль не используется в программе контроллера
		мигает	Аварийная ситуация
I NIK	LNK Зеленый –		Обмен данными по системной шине
LINK Seller	Эеленый	выключен	Нет обмена по системной шине
DI / DO	Зепеный	включен	Состояние входа или выхода: «замкнут»
DI / DO	<u>зеленыи</u>	выключен	Состояние входа или выхода: «замкнут»

2.2 Код заказа и маркировка

Типы модулей расширения:

	Модификация	Описание
1	MR - 0120-00-0	12 дискретных гальванически развязанных входов
'		постоянного напряжения
2	MR - 0800-00-0	8 дискретных выходов на основе электромеханических
2		реле
3	MR – 0810-0x-0	8 дискретных гальванически развязанных входов
3		переменного напряжения
4	MR - 0061-00-0	6 дискретных гальванически развязанных выходов на
4		основе симистора
	MR – 0602-00-0	6 дискретных выходов на основе
5		электромеханических реле
		2 аналоговых гальванически развязанных выхода 0-10B
	MR - 0504-00-0	5 дискретных выходов на основе
6		электромеханических реле
		4 аналоговых гальванически развязанных выхода 0-10В


2.3 Дополнительные принадлежности

Кабель соединительный

Кабель длиной 0.08м входит в комплект поставки каждого модуля. Данный кабель используется для объединения модулей между собой. Для подключения к контроллеру требуется дополнительно заказать кабель увеличенной длины. Это связано с особенностями компоновки контроллеров:

- Pixel xxxx-xx-x удлиненный кабель не требуется
- SMH2G xxxx-xx-x минимум CB-MR 0.5
- SMH2G(i) xxxx-xx-x минимум CB-MR 0.5
- SMH4 xxxx-xx-х минимум CB-MR 0.5

Наименование	Характеристика
Кабель соединительный CB-MR – 0.08	L=80 мм. Используется при монтаже модулей в непосредственной близости друг к другу или к контроллерам семейства Pixel – xxxx-xx-x
Кабель соединительный CB-MR – 0.5	L=500 мм. Используется при монтаже модулей на разных DIN-рейках внутри одного шкафа
Кабель соединительный CB-MR – 1.0	L=1000 мм. Используется при монтаже модулей на разных DIN-рейках внутри одного шкафа
Кабель соединительный CB-MR – 1.5	L=1500 мм. Используется при монтаже модулей на разных DIN-рейках внутри одного шкафа или для подключения к контроллеру, закреплённому на дверце шкафа
Кабель соединительный CB-MR – 2.0	L=2000 мм. Используется для подключения к контроллеру, закреплённому на дверце шкафа

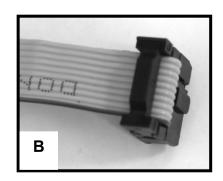


Рисунок 6. Внешний вид кабеля соединительного CB-MR - X.X

A – вилка кабеля, которая присоединяется к выходному разъему контроллера или предыдущего модуля

В – вилка кабеля, которая присоединяется к входному разъему модуля

2.4 Габаритные и установочные размеры

Габаритные и установочные размеры корпуса модуля представлены на рисунке ниже:

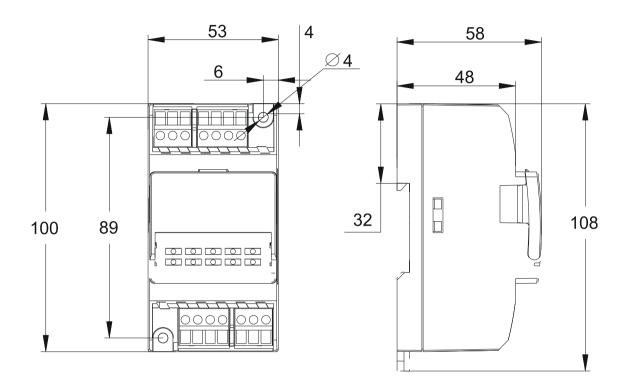
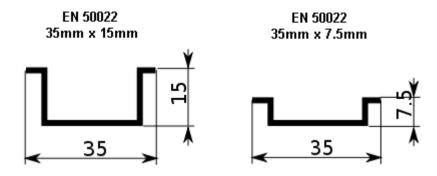



Рисунок 7. Габаритные и установочные размеры

3. Подготовка к работе

3.1 Монтаж на DIN-рейку

- Закрепить DIN-рейку
- Оттянуть пружинный зажим, расположенный в нижней части модуля
- Зацепить модуль за верхнюю часть DIN-рейки
- Прижать модуль к рейке и отпустить фиксатор
- Убедиться в том, что модуль надежно закреплен за DIN-рейку

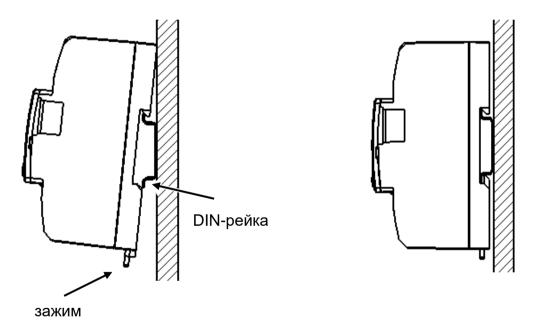


Рисунок 8. Установка модуля на DIN-рейку

3.2 Монтаж на монтажную панель

Выбрать место на панели. Просверлить отверстия под крепеж, нарезать резьбу М4, либо воспользоваться саморезами. Приложить модуль к панели и зафиксировать, используя винты и отвертку.

3.2 Компоновка модулей в шкафу

Модули монтируются в линию (шину) на стандартную DIN-рейку, или саморезами непосредственно на монтажную плату шкафа управления. В качестве примера приведен пример монтажа модулей MR с контроллером Pixel – xxxx-xx-x:

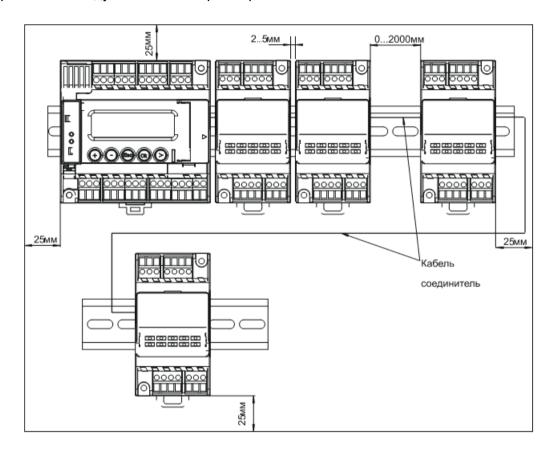


Рисунок 9. Порядок расположения модулей расширения MR в щите управления

Все модули подключаются друг к другу соединительным кабелем длиной 0.08м, входящим в комплект поставки.

Слева на линии системной шины всегда располагается контроллер. Модули можно как устанавливать в непосредственной близости друг к другу, так и разносить на расстояние до 2 метров с использованием кабелей CB-MR различной длины.

Для обеспечения наилучших условий естественного охлаждения, обеспечьте минимальное расстояние между стенками щита управления и модулями не менее 25 мм и расстояние между самими модулями 2..5 мм.

4. Использование модулей. Общая информация

4.1 Системная шина

Системная шина является связующим элементом всех модулей расширения и контроллера. Она обеспечивает передачу электропитания и обмен данными.

Адресация модулей в системной шине задается физическим расположением модулей на системной шине. Таким образом, необходимо внимательно следить за соответствием порядка подключения: он должен в точности повторять порядок, заданный в программе контроллера.

Каждый модуль расширения гальванически изолирован от всех остальных компонентов системной шины. Подача напряжения до 1500В на вход или выход модуля расширения может привести к неисправности частей самого модуля, но не приведет к выходу из строя контроллера или остальных модулей расширения.

Технические характеристики системной шины

Параметр	Значение
Максимальное количество модулей на шине	8
Гальваническая изоляция	Между модулями расширения Между модулями расширения и контроллером
Напряжение изоляции, не менее, В	1500
Максимальное количество точек ввода/вывода	до 96 входов до 64 выходов
Типы базового контроллера	Pixel – 25xx, все модели SMH2G, все модели SMH2G(i), все модели SMH4, все модели
Адресация	Задана физическим расположением на шине
Цикл опроса состояния модулей	Синхронно с циклом работы программы в контроллере
Питание	От контроллера
Максимальное расстояние между отдельными модулями	2 метра

4.2 Электропитание

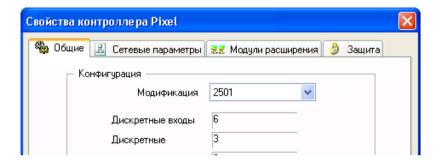
Для подбора источника питания необходимо рассчитать требуемую мощность. В таблице ниже приведены максимальные значения потребляемой мощности для каждой модификации модуля расширения MR при следующих условиях:

- Напряжение питания 24В постоянного тока
- Все выходы нагружены на максимальную паспортную нагрузку
- На все входы подано максимальное паспортное напряжение

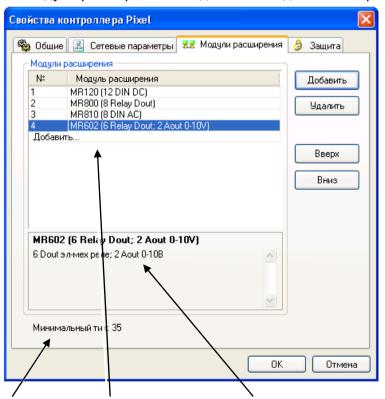
Для вычисления общей требуемой мощности источника питания необходимо просуммировать мощность самого контроллера и каждого MR, входящего в системную шину.

Максимальная потребляемая мощность

Код заказа	Ток потребления, А	Потребляемая мощность, Вт
MR – 0120-00-0	0.08	1.92
MR - 0800-00-0	0.15	3.60
MR – 0810-0x-0	0.02	0.48
MR – 0061-00-0	0.05	1.20
MR - 0062-00-0	0.13	3.12
MR - 0602-00-0	0.14	3.36
MR – 0504-00-0	0.13	3.12

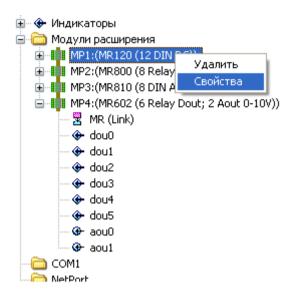


Внимание. Диапазон допустимых напряжений питания модулей расширения (18...36В постоянного тока) может быть уже или шире, чем у контроллера, к которому они подключены! Будьте внимательны при выборе блока питания!


4.3 Использование в программе контроллера

Ниже приводится пример создания проекта с модулями в составе контроллера Pixel – 25xx-xx-x. Создание проекта для других контроллеров производится аналогично.

- 1. Запустить программу «SMLogix»
- 2. Создать проект, выбрав Файл → Новый → Проект
- 3. Выбрать модификацию устройства «Pixel 25xx»


4. Во вкладке «Модули расширения» создать необходимый набор MR:

Тик проекта Создан набор из 4х МР Описание модуля

Тик проекта — это время в миллисекундах, при котором состояния входов модулей передаются в программу синхронно с её выполнением. Т.е. если тик проекта больше указанного в этом поле значения, то гарантируется доставка новых данных к началу каждого цикла выполнения программы.

5. Нажать ОК. Теперь в дереве устройств отображаются выбранные MR:

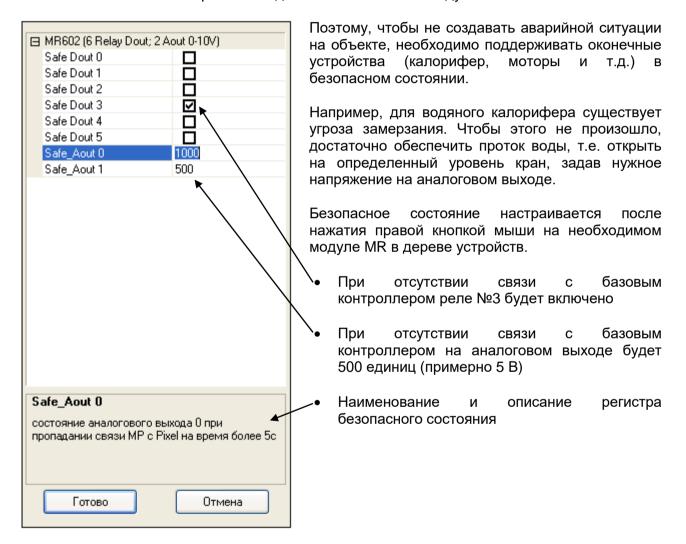
В «SMLogix» работа с входами/выходами модулей расширения не отличается от работы с входами/выходами самого «Pixel». В каком порядке собраны модули в программе контроллера, в таком порядке они должны быть подключены к системной шине.

Чтобы изменить набор или порядок расположения модулей, необходимо вернуться к закладке «Модули расширения».

У каждого модуля MR есть блок MR(Link). Он предназначен для диагностики работы модуля.

Чтобы редактировать свойства MR, следует кликнуть правой кнопкой мыши на значке соответствующего модуля.

Примечание. В каком порядке собраны модули в программе контроллера, в таком порядке они должны быть подключены к системной шине.


Ошибочное подключение в неправильном порядке НЕ приведет к выходу из строя контроллера или любого модуля расширения.

4.4 Безопасное состояние выходов

Под безопасным состоянием подразумевается состояние выходов модулей расширения при отсутствии связи с контроллером или при неисправности самих модулей. В этом случае каждый модуль автоматически переведет свои выходы в соответствие с настроечной таблицей.

Могут возникнуть следующие ситуации, при которых модули потеряют связь с контроллером:

- загрузка программы в контроллер
- повреждение шлейфа связи или одного из разъёмов
- неисправность контроллера
- неисправность одного или нескольких модулей

Примечание. Безопасное состояние будет передано в модуль MR в момент включения контроллера и инициализации системной шины.

4.5 Сборка

Подключение модулей расширения MR можно производить в любой момент времени. Но работать они начнут только после включения питания контроллера. Другими словами, «горячее» подключение модулей физически разрешено и не приведёт к повреждению ни самих модулей, ни контроллера, к которому они подключаются.

Кроме правильного порядка подключения модулей MR в контроллер должна быть загружена управляющая программа, использующая эти модули. Если это сделано и порядок модулей на шине соблюдён, то на модулях загораются индикаторы «SF» сигнализируя, что шина функционирует в штатном режиме и все устройства готовы к работе.

Для того чтобы запустить систему, необходимо выполнить следующие действия:

- а. Подключить модули MR к системной шине в том порядке, в котором они собраны в проекте «SMLogix»
- b. В предлагаемом ниже примере необходимо собрать следующую последовательность: Pixel \rightarrow MR 0120 \rightarrow MR 0810 \rightarrow MR 0602
- с. Подать питающее напряжение на контроллер
- d. Загрузить управляющую программу в контроллер
- е. Убедиться, что:
 - на каждом модуле включен индикатор «SF»
 - на каждом модуле мигает индикатор «LNK»
 - на контроллере не возникло системных аварий
- f. Если присутствуют все перечисленные признаки, значит, прошла успешная инициализация системной шины и программа начала выполняться в штатном режиме

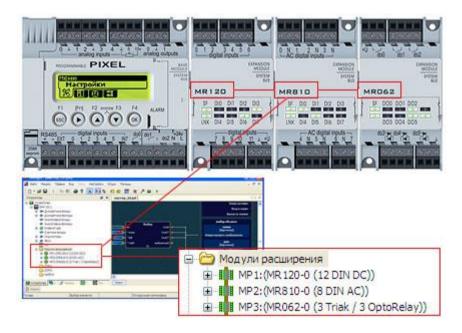


Рисунок 10. Пример сборки модулей MR

4.6 Диагностические средства

FBD-блок «MR(Link)»

У каждого MP есть блок диагностики «MR(Link)». С его помощью можно совершать диагностику MP. Блок «MR1» соответствует самому первому модулю в системной шине, блок «MR8» последнему модулю:

Рисунок 11. Диагностика модуля расширения

Описание выходов блока «MR(Link)»:

- IDError Ошибка ID. Модификация обнаруженного модуля MR не соответствует заданной в проекте. Например, в проекте выбран MR-0120-хх-х, а к системной шине на его месте подключен MR-0800-хх-х
- Break Нет связи с модулем
- Errors количество ошибок связи
- ErrPerMin количество ошибок связи за последнюю минуту
- MrAlarm код аварий модуля:

Выход	Наименование аварии
bit0	Ошибка ID MR
bit1	Нет связи с MR
bit2	Неиспр. Uпит.MR
bit3	Высокое напряжение
bit4	Низкое напряжение
bit5	Перегрузка AOut
bit6	Перегрузка DC-DC
bit7	Нет настроек MR
bit8	Не определен тип MR

Аварии модуля расширения

Возникновение неисправности модуля вызывает срабатывание аварии на контроллере (частое мигание красного аварийного светодиода на лицевой панели контроллера), а также мигание светодиода SF на самом модуле. После устранения возникшей аварии требуется сбросить аварию при помощи менеджера аварий в меню **«Системные аварии»** контроллера.

Наиболее часто встречающиеся аварии приведены ниже:

Наименование аварии	Модуль	Описание и способы устранения	
Ошибка ID MP	все	Обнаруженный модуль MR не соответствует выбранному в проекте. Возможно модули перепутаны местами, либо установлен неправильный модуль	
Нет связи с МР	все	1. Обрыв в кабеле связи, заменить кабель 2. модуль MR неисправен, заменить модуль	
Неиспр. Uпит.MP	все	 Недостаточная мощность источника питания контроллера. Установить более мощный источник питания модуль МR неисправен, заменить модуль Обрыв в кабеле связи или плохой контакт в разъёмах. Заменить кабель 	
Высокое напряжение	все	модуль MR зафиксировал недопустимое высокое напряжение питания	
Низкое напряжение	все	модуль MR зафиксировал недопустимое низкое напряжение питания	
Не определен тип МР	все	Обнаружена ошибка при внутренней диагностике модуля MR. Заменить модуль	
Нет настроек МР	все	Инициализация модуля MR не удалась, выключить/включить питание, проверить кабель связи	
Перегрузка AOut	MR – 0602-xx-x MR – 0504-xx-x	Недопустимо высокий выходной ток на аналоговых выходах. Устранить причину перегрузки или замыкания	
Перегрузка DC-DC	MR – 0120-xx-x MR – 0062-xx-x	Недопустимо высокий выходной ток на встроенном источнике питания. Устранить причину перегрузки	

Примечание. В меню «Системные аварии» все аварии различных модулей MR отделены друг от друга линией, и имеют номера, соответствующие положению в системной шине

4.7 Сервисный режим контроллера

Для подробного изучения особенностей работы сервисного режима контроллера смотрите руководство по используемому контроллеру. Для примера приведены доступные функции меню сервисного режима контроллера Pixel – 25xx-xx-x:

Функция	Назначение и пункт меню
Общие сведения	Просмотр версии, серийного номера и модификации подключенных модулей «Конфигурация» → «Системная шина»
Прямое управление входами/выходами	Управление состоянием входов/выходов «Проект SMLogix» → «Управление I/O»
	Контроль возникающих в процессе работы системных аварий: «Системные аварии»
Контроль аварий	Для восстановления хронологии событий и возникающих аварий в контроллере Pixel ведется системный журнал: «Журнал»

Сервисный режим является одним из лучших способов диагностики MP - например, Вы можете проверить работоспособность дискретных выходов/входов на объекте при помощи меню **«Управление I/O»**.

Доступные функции сервисного режима каждой модели контроллера подробно описаны в руководствах на эти контроллеры

Конфигурация модуля расширения

Чтобы конфигурацию подключенного модуля, необходимо:

- 1. зайти в меню «Конфигурация» → «Системная шина»
- 2. выбрать MR, по которому нужна информация:

```
Проект.модиф: 504 ◀
Модиф.изд: 504
Проект.версия ПО: 1
Версия ПО МР: 1
С/Н 345
```

«Проект. модиф» – это модуль, выбранный в FBD-программе

«Модиф.изд» – это модуль, *по факту подключенный* к системной шине

«Проект.версия ПО» – версия ПО, которая содержит функции, используемые в проекте

«Версия ПО MP» – версия внутренней микропрограммы модуля, подключенного к системной шине и обнаруженного контроллером

«С/Н» – серийный номер модуля

Эти данные необходимо сообщить в техническую поддержку в случае возникновения проблем.

4.8 Включение в работу

При включении питания контроллер совершает следующие действия:

- 1. инициализирует системную шину
 - определяет порядок подключения MR к системной шине
 - получает системные данные от каждого MR
- 2. настраивает каждый MR (безопасное состояние, настройки)
- 3. опрашивает состояние входов и выходов всех MR

Если модуль MR не ответил на запрос базового контроллера, процедура инициализации проводится повторно ещё два раза. После чего неисправный MR снимается с обмена. В этом случае возникает системная авария.

Если модификация модуля MR, заданного в программе контроллера, не совпадает с модификацией модуля MR, подключенного к системной шине, то этот модуль также снимается с обмена. В этом случае также возникает системная авария.

Если возникла необходимость заменить какой-либо модуль MR или поменять конфигурацию, то необходимо:

- выключить питание
- выполнить требуемые действия
- включить питание
- убедиться, что инициализация прошла успешно

Успешной инициализация считается в том случае, если после ее проведения не возникло системных ошибок.

Внимание! «Горячее» подключение модулей MR не поддерживается. Замена модулей без обесточивания не рекомендуется, однако это не приводит к потере их работоспособности.

Примечание. Информация о свойствах модуля MR содержится в самом модуле. Контроллер ее получает только после успешной инициализации системной шины.

4.9 Влияние количества модулей MR на FBD-программу

Информация о состоянии входов и выходов передается в FBD-программу синхронно с её выполнением (тиком системы).

Состояния выходов передаются из контроллера каждый раз по окончании обработки всех FBD-блоков программы. Таким образом, выходы всех модулей MR всегда имеют то состояние, которое задано в программе, т.е. переключаются в реальном времени.

Если в обмен с модулями MR занимает больше времени чем выполняется программа, то синхронность процессов теряется и время реакции модулей на команды возрастает.

Длительность обмена зависит от количества подключенных модулей MR. Информацию о длительности обмена собранного набора модулей MR можно посмотреть в свойствах устройства, закладка «Модули расширения».

Зависимость скорости обмена с модулями MR от их количества приведена в таблице ниже. В качестве примера взят произвольная программа на 3000 FBD-блоков для контроллера Pixel – 2501-02-0 + 8 модулей MR – 0504-00-0:

Зависимость реального тика системы от числа модулей MR

Количество модулей, шт.	Тик, мс	Время обмена, мс
Контроллер без MR	129	-
1 модуль расширения	135	20
2 модуля расширения	138	25
3 модуля расширения	140	30
4 модуля расширения	141	35
5 модулей расширения	143	40
6 модулей расширения	145	45
7 модулей расширения	147	50
8 модулей расширения	149	55

Необходимо учитывать, что приведенные данные являются теоретическим максимумом, и могут меняться в зависимости от программы и типов используемых модулей расширения.

5. Модификации модулей расширения

5.1 Модуль расширения MR - 0120-00-0

В модуле реализованы 12 гальванически развязанных дискретных входов постоянного тока. Входы предназначены для подключения датчиков следующих типов:

- датчиков типа «сухой контакт»
- активных датчиков с выходом типов «NPN» и «PNP»

Также в модуль встроен гальванически развязанный источник питания для подключения датчиков типа «сухой контакт». Выходная мощность источника питания рассчитана для питания всех цифровых входов, расположенных на модуле.

Основные технические характеристики модуля приведены в таблице «Технические характеристики дискретных входов MR – 0120-00-0».

Технические характеристики дискретных входов

Наименование параметра	Значение параметра
Диапазон входного постоянного напряжения в состоянии «разомкнуто»	03B
Диапазон входного постоянного напряжения в состоянии «замкнуто»	1040B
Входной ток канала в состоянии «замкнуто», не менее	4 мА
Входной ток канала в состоянии «замкнуто», не более	7 мА
Максимальная частота счетных входов DIN0, DIN1	950 Гц
Напряжение гальванической изоляции, не менее	1000 B
Максимальная выходная мощность встроенного источника питания	1.5 Вт
Диапазон изменения выходного напряжения встроенного источника питания при изменении нагрузки от 100 до 10%	10 – 20B
Защита встроенного источника питания от замыкания	да

Внешний вид, назначение клемм и индикаторов

Индикаторы «DI0»...«DI7» включены, если соответствующий вход находится в состоянии «замкнуто» (подано напряжение).

Для того чтобы встроенный источник питания включился, достаточно подать питающее напряжение на контроллер. Источник будет включен независимо от состояния системной шины.

Наименование и назначение клемм

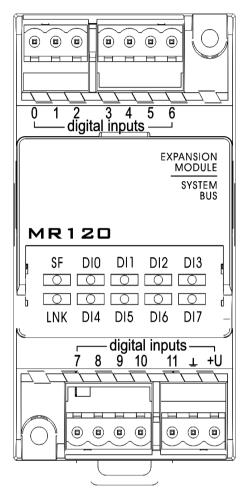


Рис. 12. Внешний вид MR - 0120-00-0

Наимено-Клемма Индикатор Назначение вание Цифр. вход 1 DIN₀ DI0 Счетный вход Цифр. вход 2 DIN1 DI1 Счетный вход 3 DIN2 DI2 Цифр. вход 4 DIN3 DI3 Цифр. вход 5 DIN4 DI4 Цифр. вход 6 DIN₅ DI5 Цифр. вход 7 DIN6 DI6 Цифр. вход 8 DIN7 DI7 Цифр. вход 9 DIN8 Цифр. вход 10 DIN9 Цифр. вход 11 DIN₁₀ Цифр. вход 12 DIN11 Цифр. вход Гальванически развязанная 13 **GND** «земля» источника питания Выход гальванически 14 +U развязанного источника питания

Внимание. Индикаторы на передней панели MR – 0120-00-0 отображают состояние только первых восьми входов

Схемы подключений

Примеры подключений различных типов датчиков к МР приведены ниже на рисунках.

- +U встроенный гальванически развязанный источник питания
- **GND** общая гальванически развязанная шина земли для схемы дискретных входов
- **DIN X** цифровой вход с номером X (DIN0-DIN11)

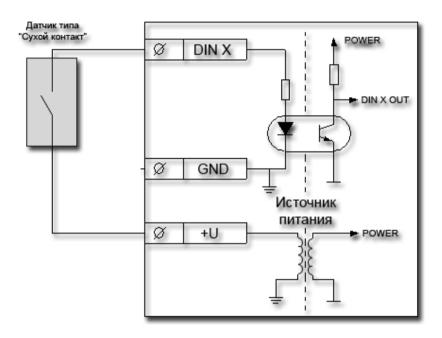


Рис. 13. Подключение MR – 0120-00-0 к датчикам типа «сухой контакт» с питанием от внутреннего источника напряжения

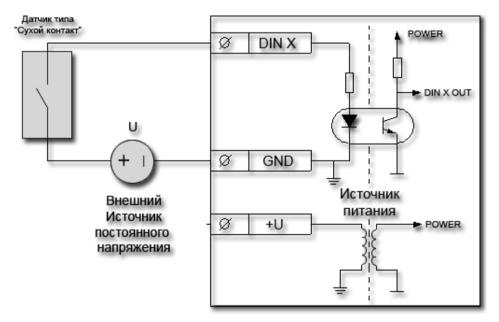


Рис. 14. Подключение MR – 0120-00-0 к датчикам типа «сухой контакт» с питанием от внешнего источника напряжения

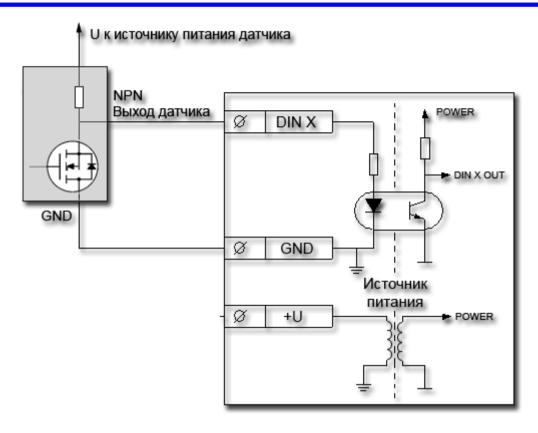


Рис. 15. Подключение MR – 0120-00-0 к датчикам типа «NPN»

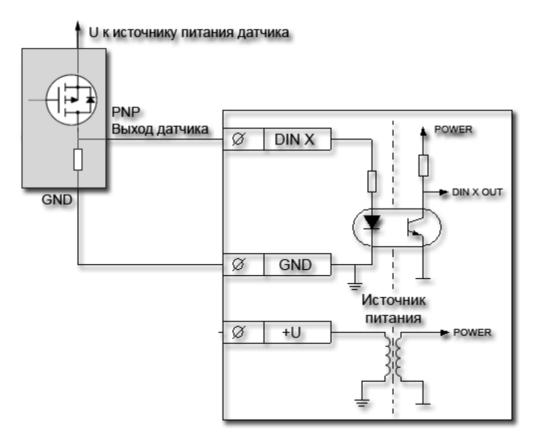
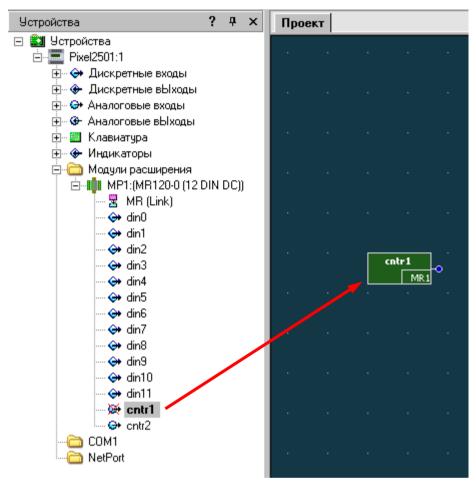
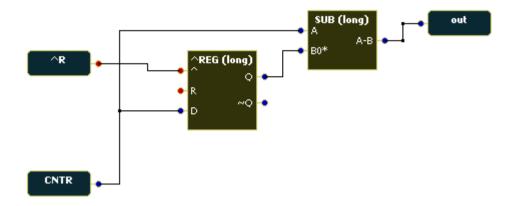
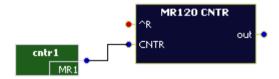



Рис. 16. Подключение MR – 0120-00-0 к датчикам типа «PNP»


Использование счётных входов

Для использования входа в режиме счётчика импульсов никаких дополнительных действий выполнять не нужно. Достаточно вытащить блок «cntr1» или «cntr2» в программу. На выходе блока нарастающим результатом будет показано количество пришедших на этот вход импульсов.



Счёт ведётся с момента включения питания. При достижении максимального результата в 2^{31} -1 счётчик «переполнится» и перейдёт в отрицательные величины. Полностью круг счёта можно описать следующей последовательностью: 0; 1; 2; 3 ... 2^{31} -1...- 2^{31} ...-3; -2; -1; 0; 1; 2; 3 ... и т.д.

Если в программе нужно использовать отсчёт от нуля в любой момент времени, то к выходу блока подключается следующая схема:

Лучше всего её оформить в виде макроса. Получаем следующую схему:

Назначение входов/выходов схемы:

^R – вход сброса показаний счётчика, в момент перехода состояния входа из нуля в единицу выход «out» схемы будет обнулён

CNTR – к этому входу подключается блок счётчика

out – выход схемы, содержит количество импульсов, пришедших на счётчик с момента последнего сброса, счёт от нуля до 2³¹-1

Готовый макрос можно взять в библиотеке макросов на нашем форуме.

Форум расположен по адресу: http://forum.segnetics.com/

5.2 Модуль расширения MR – 0800-00-0

В модуле реализованы 8 дискретных выходов на основе электромеханических реле. Особенностью данного модуля является ограниченный ресурс контактов реле. Это накладывает ограничения связанные с необходимостью применять модуль для надежных, но не частых коммутаций.

В случае частых коммутаций необходимо применять модуль MR – 0061-00-0.

Технические характеристики дискретных выходов

Наименование параметра	Значение параметра
Максимально допустимое коммутируемое напряжение постоянного тока, не более	28 B
Максимально допустимое коммутируемое действующее напряжение переменного тока, не более	242 B
Максимально допустимый коммутируемый ток при активной нагрузке (AC-1/DC-1), не более	5 A
Минимальный ресурс (количество переключений)	100 000

Внешний вид и назначение клемм приведены ниже.

Индикаторы DO0-DO7 включены, если контакты соответствующих реле замкнуты.

Наименование и назначение клемм

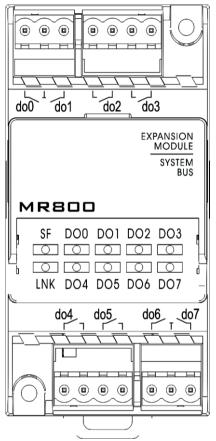


Рис. 17. Внешний вид MR – 800-00-0

Клемма	Наимено- вание	Индикатор	Назначение
1	do0	DO0	Контакт реле 0
2	Общий do0 и do1	-	Общий контакт реле 0 и 1
3	do1	DO1	Контакт реле 1
4	do2	DO2	Контакт реле 2
5	do2	DO2	Контакт реле 2
6	do3	D00	Контакт реле 3
7	do3	DO3	Контакт реле 3
8	do4	DO4	Контакт реле 4
9	do4	DO4	Контакт реле 4
10	do5	DOF	Контакт реле 5
11	do5	DO5	Контакт реле 5
12	do6	DO6	Контакт реле 6
13	Общий do6 и do7	-	Общий контакт реле 6 и 7
14	do7	DO7	Контакт реле 7

Схема подключения дискретных выходов

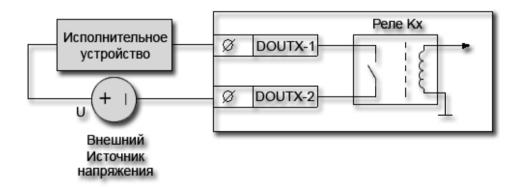


Рис. 18. Подключение к исполнительному устройству

- Кх электромеханическое реле
- DOOUTX-1 и DOOUTX-2 1 и 2 контакты реле с номером х
- U Внешний источник напряжения переменного или постоянного тока

5.3 Модули расширения MR - 0602-00-0 и MR - 0504-00-0

В модулях реализованы гальванически развязанные аналоговые выходы и дискретные выходы на основе электромеханических реле. Аналоговые выходы не имеют гальванической развязки между собой.

MR - 0602-00-0 - **6** дискретных выходов

2 аналоговых выхода

MR – 0504-00-0 - **5** дискретных выходов

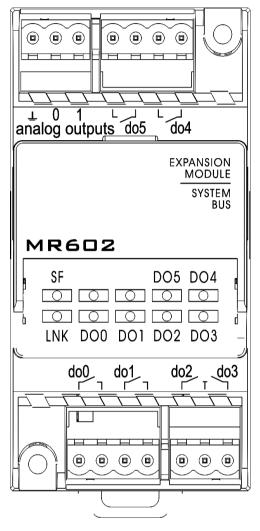
4 аналоговых выхода

Модули предназначены для коммутации нагрузок питающихся напряжением переменного и постоянного тока, и управления исполнительными устройствами с унифицированным входным сигналом 0-10B (2-10B) (например, для работы в качестве задатчика контура скорости частотного электропривода).

Основные технические характеристики модулей приведены в таблицах ниже.

Технические характеристики дискретных выходов

Наименование параметра	Значение параметра
Максимально допустимое коммутируемое напряжение постоянного тока, не более	28 B
Максимально допустимое коммутируемое действующее напряжение переменного тока, не более	242 B
Максимально допустимый коммутируемый ток при активной нагрузке (AC-1/DC-1), не более	5 A
Минимальный ресурс (количество переключений)	100 000


Технические характеристики аналоговых выходов

Наименование параметра	Значение параметра
Диапазон изменения выходного напряжения	0.0310 B
Шаг изменения выходного напряжения	10 мВ
Максимальный ток одного аналогового выхода	2,5 мА
Встроенная защита от перегрузки по току аналоговых выходов	Да
Защита от подачи напряжения постоянного тока величиной, не более	36 B
Защита от подачи действующего напряжения переменного тока величиной, не более	25 B

Внешний вид и назначение клемм MR – 0602-00-0 и MR – 0504-00-0 приведены ниже.

Индикаторы DO0-DO5 включены, если контакты соответствующих реле замкнуты.

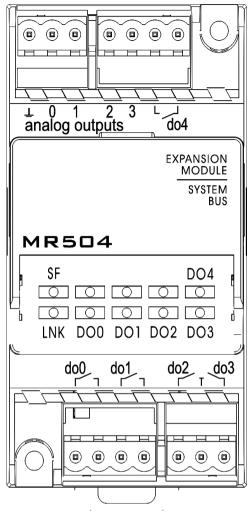


Рис. 19 Внешний ви	д MR – 0602-00-0
--------------------	------------------

Клемма	Наимено- вание	Индикатор	Назначение
1	AGND	-	Гальван. разв. аналоговая "земля"
2	AOUT0	-	Гальван. разв. аналоговый выход 0-10 В
3	AOUT1	-	Гальван. разв. аналоговый выход 0-10 В
4	do5	DO5	Контакт реле 5
5	do5		Контакт реле 5
6	do4	DO4	Контакт реле 4
7	do4	DO4	Контакт реле 4
8	do0	DO0	Контакт реле 0
9	do0	D00	Контакт реле 0
10	do1	DO1	Контакт реле 1
11	do1	DOT	Контакт реле 1
12	do2	DO2	Контакт реле 2
13	Общий do2 и do3	-	Общий контакт реле 2 и 3
14	do3	DO2	Контакт реле 3

Наименование и назначение клемм МR - 0504-00-0

Puc 20) Внешний ви	л MR – 09	04-00-0

Клемма	Наимено- вание	Индикатор	Назначение
1	AGND	-	Гальван. разв. аналоговая «земля»
2	AOUT0	-	Гальван. разв. аналоговый выход 010 В
3	AOUT1	-	Гальван. разв. аналоговый выход 010 В
4	AOUT2	-	Гальван. разв. аналоговый выход 010 В
5	AOUT3	-	Гальван. разв. аналоговый выход 010 В
6	do4	DO4	Контакт реле 4
7	do4	DO4	Контакт реле 4
8	do0	DO0	Контакт реле 0
9	do0	DOU	Контакт реле 0
10	do1	DO1	Контакт реле 1
11	do1	DOT	Контакт реле 1
12	do2	DO2	Контакт реле 2
13	Общий do2 и do3	-	Общий контакт реле 2 и 3
14	do3	DO3	Контакт реле 3

Схема подключения дискретных выходов

Схема подключения дискретных выходов аналогична подключению дискретных выходов модуля MR – 0800-00-0 (см. стр. 37).

Схемы подключения аналоговых выходов

Схемы подключения аналоговых выходов приведены ниже.

В рисунках используются следующие обозначения:

- AOUT X клемма аналогового выхода MP с номером X
- AGND общая клемма земли для всех аналоговых выходов
- AIN клеммы на исполнительном устройстве для подключения аналоговых сигналов управления
- GND клемма земли на исполнительном устройстве

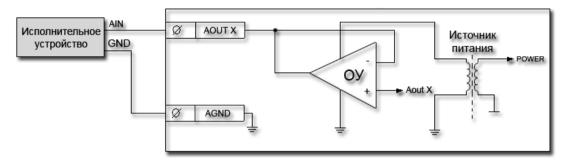


Рис. 21 Подключение к исполнительному устройству с изолированным входом

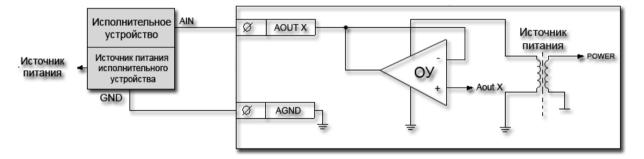


Рис. 22 Подключение к исполнительному устройству с неизолированным входом

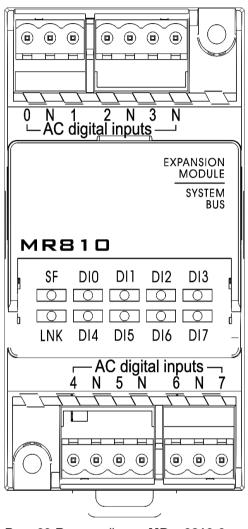
5.4 Модуль расширения MR – 0810-0x-0

В модуле реализованы 8 гальванически развязанных дискретных входов переменного напряжения.

Модуль применяется для контроля наличия входного питающего напряжения, например, для проверки срабатывания контакторов, пускателей, для организации автоматического повторного включения систем кондиционирования и вентиляции, ввода резервного электропитания. Входы модуля допускается подключать к разным фазам контролируемого напряжения 380В.

Входы обладают высокой стойкостью к перегрузкам питающей сети и кратковременным выбросам/падениям напряжения.

Технические характеристики дискретных входов


Наименальние деромето	Значение параметра		
Наименование параметра	Исполнение 00	Исполнение 01	
Диапазон действующего напряжения переменного тока в состоянии «нет сигнала»	020 B		
Диапазон действующего напряжения переменного тока в состоянии «наличие сигнала»	160242 B 160253*		
Частота переменного тока	47-62 Гц		
Действующее значение потребляемого тока одного канала при напряжении 230 ^{±10%} В, не менее	4.0 mA 5.8 mA		
Максимальное действующее значение потребляемого тока одного канала	7.5 мА (при 242 В)	8.7 мА (при 253 В)	
Максимальная потребляемая полная мощность одного канала	1.8 BA (при 242 B)	2.2 BA (при 253 B)	
Встроенные элементы искрозащиты	Да		

^{* -} модули исполнения 01 выдерживают 300 В действующего значения переменного тока на входе в течение 5 секунд

Внешний вид и назначение клемм МR – 0810-0х-0 приведены ниже.

Индикаторы DI0-DI7 включены, если контакты соответствующих реле замкнуты.

Наименование и назначение клемм

Клемма	Наимено- вание	Индикатор	Назначение
1	DIN0	DI0	Фаза
2	N	-	Общая нейтраль фаз DIN0 и DIN1
3	DIN1	DI1	Фаза
4	DIN2	DI2	Фаза
5	N	DIZ	Нейтраль
6	DIN3	Dia	Фаза
7	N	DI3	Нейтраль
8	DIN4	DI4	Фаза
9	N	D14	Нейтраль
10	DIN5	DIE	Фаза
11	N	DI5	Нейтраль
12	DIN6	DI6	Фаза
13	N	-	Общая нейтраль фаз DIN6 и DIN7
14	DIN7	DI7	Фаза

Схемы подключения дискретных входов

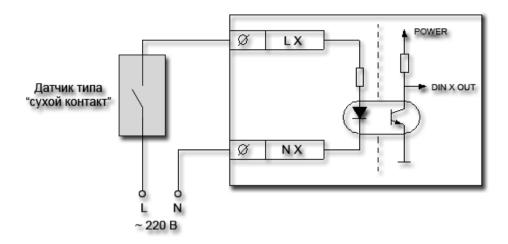


Рис. 24 Подключение датчика типа «сухой контакт»

LX – фаза, и NX – нейтраль. L, N – линейное напряжение, нейтраль соответственно.

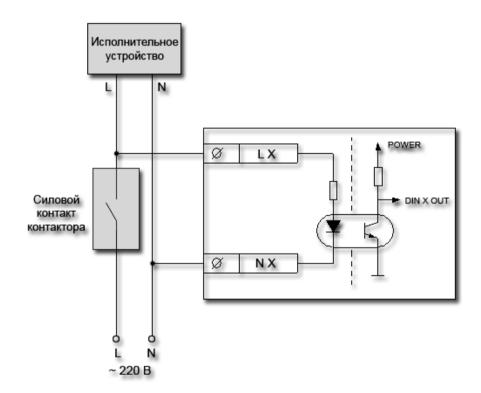


Рис. 25 Пример применения для контроля наличия питающей сети исполнительного устройства LX – фаза, и NX – нейтраль. L, N – линейное напряжение, нейтраль соответственно.

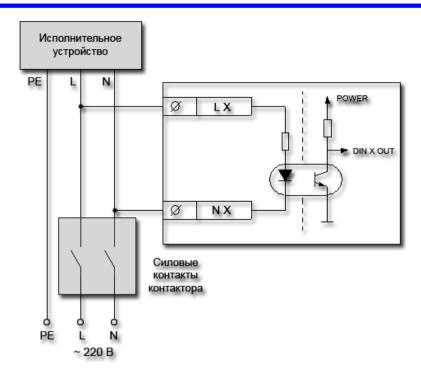


Рис. 26 Пример применения для контроля наличия питающей сети исполнительного устройства LX – фаза, и NX – нейтраль, L, N, PE – линейное напряжение, нейтраль, защитный проводник соответственно.

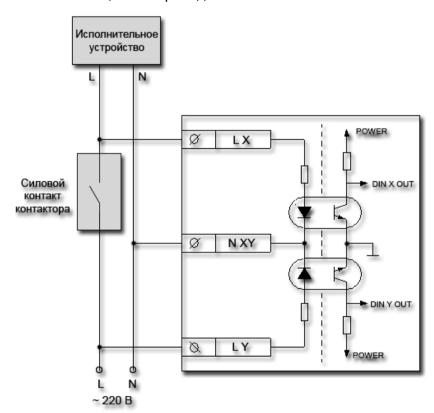


Рис. 27 Пример применения для контроля наличия внешней питающей сети и срабатывания контактов контактора (идеально для клемм 1-3, 12-14)

LX, LY – фаза, и NXY – общая нейтраль фазы LY, LX. L, N – линейное напряжение, нейтраль соответственно.

5.5 Модуль расширения MR – 0061-00-0

В модуле реализованы 6 гальванически развязанных дискретных выходов на основе симисторов, предназначенных для коммутации переменного тока.

Наиболее часто данный модуль применяется для управления лампами накаливания, регулирующими приводами и для управления твердотельными реле переменного тока.

Основные технические характеристики приведены в таблице.

На рисунках ниже изображены наиболее часто используемые схемы подключения.

Технические характеристики дискретных выходов

Наименование параметра	Значение параметра
Номинальное коммутируемое действующее напряжение переменного тока	230 B
Максимальное коммутируемое действующее напряжение <i>переменного</i> тока, не более	270 B
Максимальный действующий коммутируемый переменный ток	1 A
Максимальное значение тока утечки дискретного выхода на основе симистора, не более (при 230 В)	1 мА
Минимальное количество коммутаций	Не ограничено

Внешний вид и назначение клемм МR – 0061-00-0 приведены ниже.

Индикаторы DO0-DO5 включены, если «контакты» соответствующих симисторов «замкнуты».

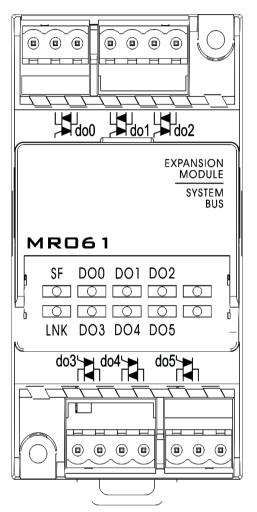


Рис. 28 Внешний вид MR - 0061-00-0

Наименование и назначение клемм

Клемма	Наимено- вание	Индикатор	Назначение
1	-	-	Не используется
2	do0	DO0	Конт. сим. 1
3	do0	טטט	Конт. сим. 2
4	do1	DO1	Конт. сим. 1
5	do1	DOT	Конт. сим. 2
6	do2	DO2	Конт. сим. 1
7	do2	DO2	Конт. сим. 2
8	do3	DO2	Конт. сим. 1
9	do3	DO3	Конт. сим. 2
10	do4	DO4	Конт. сим. 1
11	do4	DO4	Конт. сим. 2
12	do5	DO5	Конт. сим. 1
13	do5		Конт. сим. 2
14	-	-	Не используется

Примечание. Клеммы 1 и 14 не используются.
Ошибочное подключение к указанным клеммам не приведет к выходу модуля из строя

Схема подключения дискретных выходов переменного напряжения

Типовая схема подключения приведена на рисунке ниже.

При включении симистора на исполнительное устройство подается напряжение сети.

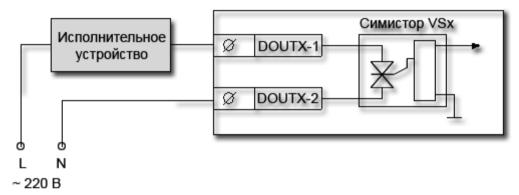


Рис. 29 Подключение к исполнительному устройству при питании от промышленной сети 230/380В переменного тока

- DOx-1 и DOx-2 1 и 2 контакты симистора с номером X
- L линейное или фазное напряжение промышленной сети 220/380B
- N нейтраль

Ниже приведена общая схема подключения исполнительных устройств при использовании произвольного источника напряжения переменного тока (например, трансформатора напряжения):

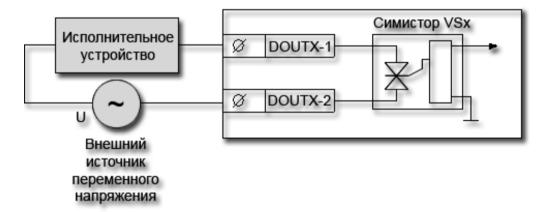


Рис. 30 Подключение к исполнительному устройству

- DOx-1 и DOx-2 1 и 2 контакты симистора с номером X
- U источник переменного тока

При использовании симисторного выхода возможна ситуация, что симистор не выключает нагрузку (из-за сильной разности фаз напряжения и тока). В этом случае рекомендуется установить дополнительный резистор достаточной мощности на выводы DOx-1 и DOx-2. Номинал резистора зависит от типа нагрузки, поэтому при возникновении такой ситуации обратитесь в службу технической поддержки.

6. Гарантийный срок

Гарантийный срок эксплуатации составляет 3 года с момента поставки.

7. Гарантийные обязательства

Обязательными условиями сохранения гарантийных обязательств являются:

- Соблюдение условий эксплуатации, хранения и транспортировки
- Соблюдение предельных параметров, приведенных в технических характеристиках

Гарантийными случаями не являются:

- Механические повреждения контроллера
- Выход из строя из-за попадания воды внутрь корпуса

8. Срок службы

Срок службы 10 лет при соблюдении условий эксплуатации.

9. Транспортировка

Транспортировка допускается любым видом транспорта с соблюдением действующих норм и правил.

10. Сведения о предприятии-изготовителе

Наименование предприятия: OOO «Segnetics»

Адрес: Россия, 199106, Санкт-Петербург, Шкиперский проток, д.14

Телефоны: (812) 380-95-27, (812) 313-41-62, (812) 335-01-91

Факс: (812) 356-04-31, (812) 335-01-91

Адреса электронной почты:

support@segnetics.com – техническая поддержка

sales@segnetics.com – отдел продаж

Адрес в сети Интернет: http://www.segnetics.com/